MARIO
A Cognitive Radio Primary User Arrivals Data Generator

Rogers S. Cristo1, G. M. D. Santana1, Diana P. M. Osorio2 and Kalinka. R. L. J. C. Branco1

1Universidade de São Paulo – São Carlos, Brazil
2Universidade Federal de São Carlos – São Carlos, Brazil

WoCCES 2018
Outline

1. Introduction
2. MARIO
3. Results
4. Conclusion
Rapid growth of devices connected to wireless networks

Future applications will demand billions of highly connected devices:
- Internet of Things
- Smart Cities

Most devices operate within unlicensed spectrum bands (IEE S-Band, IEE L-Band, ISM)

Overcrowded spectrum bands and spectrum scarcity
Introduction
Cognitive Radio

- Intelligent system built on a software defined radio
- Aware of its spectral environment
- Adapts to statistical variations

- Can improve communication
 - Security — mitigates jamming
 - Reliability — avoids overcrowded bands
 - Efficiency — licensed spectrum better utilized
• The Secondary User (SU) vacates the channel when a Primary User (PU) requests it
• Cognitive Radio should suspend its transmission and resume afterwards or change channels
• Spectrum Handoff strategies:
 • Non-handoff: the SU pauses its data transmission until the PU leaves the channel
 • Reactive handoff: the spectrum search for vacant channels is applied only when the SU detects a PU arrival in the current channel
 • Proactive handoff: the SU proactively looks for backup channels trying to predict the PU traffic pattern
 • Hybrid: the SU senses the environment looking for vacant channels and hops only when PU arrival is detected
• Proactive handoff relays on accurate PU arrival prediction
• Machine learning is used for PU arrivals prediction
• Difficult to simulate PU arrivals in existing simulators
 • GNU Radio
 • Omnet++/INET

A Poisson Process could be employed to achieve this simulation
MARIO
A Cognitive Radio Primary User Arrivals Data Generator

- PriMAry UseR ArrIvals Data GeneratOr
- Enables the production of spectrum traffic data in a simple way
- Data generated using a Poisson Process
- Validated using Hidden Markov Model
- Open-source: https://github.com/rogerscristo/MARIO
Algorithm 1: PU Arrivals data using a Poisson Process

\(RTD \leftarrow 0 \) // Random Transmission Duration

while \(RTD < MSD \) do
 Generate arrival spacing

 \(RAT \leftarrow -\ln(R \cap [0,1]) + RTD \) // Random Arrival Time

 \(RTD \leftarrow RAT + N \cap [2, TD] \) // TD is the Time Duration

 for \(x \leftarrow RAT \) to \(RTD \) do
 Populate result array
 if \(x < MSD \) // Maximum Simulation Duration
 then \(ARV[x] \leftarrow 1 \);
 end
end

return \(ARV \)
• MARIO was validated using the Hidden Markov Model (HMM)
• The HMM is an unsupervised machine learning model
• Mainly used on the prediction of events sequences
• Fits well for real-world problems
Data Generation Setup

<table>
<thead>
<tr>
<th>Channel</th>
<th>Avg. time between arrivals [min]</th>
<th>Avg. PU transmission duration [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>40</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>55</td>
<td>35</td>
</tr>
<tr>
<td>9</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
<td>45</td>
</tr>
<tr>
<td>11</td>
<td>90</td>
<td>60</td>
</tr>
<tr>
<td>12</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>13</td>
<td>120</td>
<td>90</td>
</tr>
<tr>
<td>14</td>
<td>240</td>
<td>90</td>
</tr>
<tr>
<td>15</td>
<td>240</td>
<td>120</td>
</tr>
<tr>
<td>16</td>
<td>480</td>
<td>240</td>
</tr>
<tr>
<td>17</td>
<td>480</td>
<td>300</td>
</tr>
<tr>
<td>18</td>
<td>720</td>
<td>300</td>
</tr>
<tr>
<td>19</td>
<td>720</td>
<td>480</td>
</tr>
<tr>
<td>20</td>
<td>720</td>
<td>540</td>
</tr>
</tbody>
</table>
Results

PUs arrivals timeline

Timeline [min]

Channels

Cristo, R. S. et. al.

MARIO
Results

Prediction using HMM

Channel data

Timeline [min]
Conclusion

- **MARIO**
 - Is open-source
 - Is an easy-to-use lightweight Python script
 - Abstracts the algorithmic and statistical details from the user
 - Does not require significant computing power

- **Future work will consider**
 - The application of real-data to enhance the generated-data fidelity
 - Mobility constrains
 - A graphical user interface
Thanks!

rogers.cristo@usp.br
guilherme.santana@usp.br